semantic_router.encoders.bedrock.BedrockEncoder#
- class semantic_router.encoders.bedrock.BedrockEncoder(name: str = 'amazon.titan-embed-image-v1', input_type: str | None = 'search_query', score_threshold: float = 0.3, access_key_id: str | None = None, secret_access_key: str | None = None, session_token: str | None = None, region: str | None = None)#
Bases:
BaseEncoder
- __init__(name: str = 'amazon.titan-embed-image-v1', input_type: str | None = 'search_query', score_threshold: float = 0.3, access_key_id: str | None = None, secret_access_key: str | None = None, session_token: str | None = None, region: str | None = None)#
Initializes the BedrockEncoder.
- Args:
- name: The name of the pre-trained model to use for embedding.
If not provided, the default model specified in EncoderDefault will be used.
score_threshold: The threshold for similarity scores. access_key_id: The AWS access key id for an IAM principle.
If not provided, it will be retrieved from the access_key_id environment variable.
- secret_access_key: The secret access key for an IAM principle.
If not provided, it will be retrieved from the AWS_SECRET_KEY environment variable.
- session_token: The session token for an IAM principle.
If not provided, it will be retrieved from the AWS_SESSION_TOKEN environment variable.
- region: The location of the Bedrock resources.
If not provided, it will be retrieved from the AWS_REGION environment variable, defaulting to “us-west-1”
- Raises:
ValueError: If the Bedrock Platform client fails to initialize.
Methods
__init__
([name, input_type, ...])Initializes the BedrockEncoder.
acall
(docs)chunk_strings
(strings[, MAX_WORDS])Breaks up a list of strings into smaller chunks.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
from_orm
(obj)get_env_variable
(var_name, provided_value[, ...])Retrieves environment variable or uses a provided value.
json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])set_score_threshold
(v)update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)Attributes
client
type
input_type
name
access_key_id
secret_access_key
session_token
region
score_threshold
- chunk_strings(strings, MAX_WORDS=20)#
Breaks up a list of strings into smaller chunks.
- Args:
strings (list): A list of strings to be chunked. max_chunk_size (int): The maximum size of each chunk. Default is 20.
- Returns:
list: A list of lists, where each inner list contains a chunk of strings.
- classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters:
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns:
new model instance
- dict(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- static get_env_variable(var_name, provided_value, default=None)#
Retrieves environment variable or uses a provided value.
- Args:
var_name (str): The name of the environment variable. provided_value (Optional[str]): The provided value to use if not None. default (Optional[str]): The default value if the environment variable is not set.
- Returns:
str: The value of the environment variable or the provided/default value. None: Where AWS_SESSION_TOKEN is not set or provided
- Raises:
ValueError: If no value is provided and the environment variable is not set.
- json(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.