semantic_router.index.pinecone.PineconeIndex#

class semantic_router.index.pinecone.PineconeIndex(api_key: str | None = None, index_name: str = 'index', dimensions: int | None = None, metric: str = 'cosine', cloud: str = 'aws', region: str = 'us-west-2', host: str = '', namespace: str | None = '', base_url: str | None = 'https://api.pinecone.io', init_async_index: bool = False)#

Bases: BaseIndex

__init__(api_key: str | None = None, index_name: str = 'index', dimensions: int | None = None, metric: str = 'cosine', cloud: str = 'aws', region: str = 'us-west-2', host: str = '', namespace: str | None = '', base_url: str | None = 'https://api.pinecone.io', init_async_index: bool = False)#

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Methods

__init__([api_key, index_name, dimensions, ...])

Create a new model by parsing and validating input data from keyword arguments.

add(embeddings, routes, utterances[, ...])

Add vectors to Pinecone in batches.

aget_routes()

Asynchronously get a list of route and utterance objects currently stored in the index.

aquery(vector[, top_k, route_filter])

Asynchronously search the index for the query vector and return the top_k results.

construct([_fields_set])

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.

copy(*[, include, exclude, update, deep])

Duplicate a model, optionally choose which fields to include, exclude and change.

delete(route_name)

Deletes route by route name.

delete_all()

Deletes all records from the index.

delete_index()

Deletes or resets the index.

describe()

Returns a dictionary with index details such as type, dimensions, and total vector count.

dict(*[, include, exclude, by_alias, ...])

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

from_orm(obj)

get_routes()

Gets a list of route objects currently stored in the index.

get_utterances()

Gets a list of route and utterance objects currently stored in the index, including additional metadata.

json(*[, include, exclude, by_alias, ...])

Generate a JSON representation of the model, include and exclude arguments as per dict().

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

query(vector[, top_k, route_filter])

Search the index for the query vector and return the top_k results.

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

Try to update ForwardRefs on fields based on this Model, globalns and localns.

validate(value)

Attributes

index_prefix

api_key

index_name

dimensions

metric

cloud

region

host

client

async_client

index

ServerlessSpec

namespace

base_url

routes

utterances

type

init_async_index

add(embeddings: List[List[float]], routes: List[str], utterances: List[str], function_schemas: List[Dict[str, Any]] | None = None, metadata_list: List[Dict[str, Any]] = [], batch_size: int = 100)#

Add vectors to Pinecone in batches.

async aget_routes() list[tuple]#

Asynchronously get a list of route and utterance objects currently stored in the index.

Returns:

A list of (route_name, utterance) objects.

Return type:

List[Tuple]

async aquery(vector: ndarray, top_k: int = 5, route_filter: List[str] | None = None, **kwargs: Any) Tuple[ndarray, List[str]]#

Asynchronously search the index for the query vector and return the top_k results.

Parameters:
  • vector (np.ndarray) – The query vector to search for.

  • top_k (int, optional) – The number of top results to return, defaults to 5.

  • route_filter (Optional[List[str]], optional) – A list of route names to filter the search results, defaults to None.

  • kwargs (Any) – Additional keyword arguments for the query, including sparse_vector.

  • sparse_vector (Optional[dict]) – An optional sparse vector to include in the query.

Returns:

A tuple containing an array of scores and a list of route names.

Return type:

Tuple[np.ndarray, List[str]]

Raises:

ValueError – If the index is not populated.

classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model#

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model#

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters:
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns:

new model instance

delete(route_name: str)#

Deletes route by route name. This method should be implemented by subclasses.

delete_all()#

Deletes all records from the index.

delete_index()#

Deletes or resets the index. This method should be implemented by subclasses.

describe() Dict#

Returns a dictionary with index details such as type, dimensions, and total vector count. This method should be implemented by subclasses.

dict(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny#

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

get_routes() List[Route]#

Gets a list of route objects currently stored in the index.

Returns:

A list of Route objects.

Return type:

List[Route]

get_utterances() List[Utterance]#

Gets a list of route and utterance objects currently stored in the index, including additional metadata.

Returns:

A list of tuples, each containing route, utterance, function

schema and additional metadata. :rtype: List[Tuple]

json(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = None, models_as_dict: bool = True, **dumps_kwargs: Any) str#

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

query(vector: ndarray, top_k: int = 5, route_filter: List[str] | None = None, **kwargs: Any) Tuple[ndarray, List[str]]#

Search the index for the query vector and return the top_k results.

Parameters:
  • vector (np.ndarray) – The query vector to search for.

  • top_k (int, optional) – The number of top results to return, defaults to 5.

  • route_filter (Optional[List[str]], optional) – A list of route names to filter the search results, defaults to None.

  • kwargs (Any) – Additional keyword arguments for the query, including sparse_vector.

  • sparse_vector (Optional[dict]) – An optional sparse vector to include in the query.

Returns:

A tuple containing an array of scores and a list of route names.

Return type:

Tuple[np.ndarray, List[str]]

Raises:

ValueError – If the index is not populated.

classmethod update_forward_refs(**localns: Any) None#

Try to update ForwardRefs on fields based on this Model, globalns and localns.