routers
semantic_router.routers.hybrid
HybridRouter Objects
A hybrid layer that uses both dense and sparse embeddings to classify routes.
__init__
Initialize the HybridRouter.
Arguments:
encoder
(DenseEncoder
): The dense encoder to use.sparse_encoder
(Optional[SparseEncoder]
): The sparse encoder to use.
add
Add a route to the local HybridRouter and index.
Arguments:
route
(Route
): The route to add.
__call__
Call the HybridRouter.
Arguments:
text
(Optional[str]
): The text to encode.vector
(Optional[List[float] | np.ndarray]
): The vector to encode.simulate_static
(bool
): Whether to simulate a static route.route_filter
(Optional[List[str]]
): The route filter to use.sparse_vector
(dict[int, float] | SparseEmbedding | None
): The sparse vector to use.
fit
Fit the HybridRouter.
Arguments:
X
(List[str]
): The input data.y
(List[str]
): The output data.batch_size
(int
): The batch size to use for fitting.max_iter
(int
): The maximum number of iterations to use for fitting.local_execution
(bool
): Whether to execute the fitting locally.
evaluate
Evaluate the accuracy of the route selection.
Arguments:
X
(List[str]
): The input data.y
(List[str]
): The output data.batch_size
(int
): The batch size to use for evaluation.
Returns:
float
: The accuracy of the route selection.