HybridRouter Objects
__init__
encoder(DenseEncoder): The dense encoder to use.sparse_encoder(Optional[SparseEncoder]): The sparse encoder to use.
add
route(Route): The route to add.
aadd
routes(List[Route] | Route): The route(s) to add.
__call__
text(Optional[str]): The text to encode.vector(Optional[List[float] | np.ndarray]): The vector to encode.simulate_static(bool): Whether to simulate a static route.route_filter(Optional[List[str]]): The route filter to use.limit(int | None): The number of routes to return, defaults to 1. If set to None, no limit is applied and all routes are returned.Optional[str]0 (Optional[str]1): The sparse vector to use.
Optional[str]2: A RouteChoice or a list of RouteChoices.
acall
text(Optional[str]): The text to route.vector(Optional[List[float] | np.ndarray]): The vector to route.simulate_static(bool): Whether to simulate a static route (ie avoid dynamic route LLM calls during fit or evaluate).route_filter(Optional[List[str]]): The route filter to use.sparse_vector(dict[int, float] | SparseEmbedding | None): The sparse vector to use.
Optional[str]0: The route choice.
fit
X(List[str]): The input data.y(List[str]): The output data.batch_size(int): The batch size to use for fitting.max_iter(int): The maximum number of iterations to use for fitting.local_execution(bool): Whether to execute the fitting locally.
evaluate
X(List[str]): The input data.y(List[str]): The output data.batch_size(int): The batch size to use for evaluation.
float: The accuracy of the route selection.
