BaseIndex Objects
add
embeddings(List[List[float]]): List of embeddings to add to the index.routes(List[str]): List of routes to add to the index.utterances(List[str]): List of utterances to add to the index.function_schemas(Optional[List[Dict[str, Any]]]): List of function schemas to add to the index.metadata_list(List[Dict[str, Any]]): List of metadata to add to the index.
aadd
embeddings(List[List[float]]): List of embeddings to add to the index.routes(List[str]): List of routes to add to the index.utterances(List[str]): List of utterances to add to the index.function_schemas(Optional[List[Dict[str, Any]]]): List of function schemas to add to the index.metadata_list(List[Dict[str, Any]]): List of metadata to add to the index.
get_utterances
include_metadata(bool): Whether to include function schemas and metadata in the returned Utterance objects.
List[Utterance]: A list of Utterance objects.
aget_utterances
include_metadata(bool): Whether to include function schemas and metadata in the returned Utterance objects.
List[Utterance]: A list of Utterance objects.
get_routes
List[Route]: A list of Route objects.
delete
route_name(str): Name of the route to delete.
adelete
route_name(str): Name of the route to delete.
list[str]: List of IDs of the vectors deleted.
describe
IndexConfig: An IndexConfig object.
is_ready
bool: True if the index is ready, False otherwise.
ais_ready
bool: True if the index is ready, False otherwise.
query
vector(np.ndarray): The vector to search for.top_k(int): The number of results to return.route_filter(Optional[List[str]]): The routes to filter the search by.sparse_vector(dict[int, float] | SparseEmbedding | None): The sparse vector to search for.
Tuple[np.ndarray, List[str]]: A tuple containing the query vector and a list of route names.
aquery
vector(np.ndarray): The vector to search for.top_k(int): The number of results to return.route_filter(Optional[List[str]]): The routes to filter the search by.sparse_vector(dict[int, float] | SparseEmbedding | None): The sparse vector to search for.
Tuple[np.ndarray, List[str]]: A tuple containing the query vector and a list of route names.
aget_routes
NotImplementedError: If the method is not implemented by the subclass.
list[tuple]: A list of tuples, each containing a route name and an associated utterance.
delete_all
NotImplementedError: If the method is not implemented by the subclass.
delete_index
NotImplementedError: If the method is not implemented by the subclass.
adelete_index
lock
scope(str | None): The scope to lock.wait(int): The number of seconds to wait for the index to be unlocked, if set to 0, will raise an error if index is already locked/unlocked.
ConfigParameter: The config parameter that was locked.
alock
__len__
int: The total number of vectors.
alen
int: The total number of vectors.
parse_route_info
metadata(List[Dict[str, Any]]): List of metadata dictionaries.
List[Tuple]: A list of tuples, each containing route, utterance, function schema and additional metadata.
