QdrantIndex Objects
add
embeddings(List[List[float]]): The embeddings to add.routes(List[str]): The routes to add.utterances(List[str]): The utterances to add.function_schemas(Optional[List[Dict[str, Any]]]): The function schemas to add.metadata_list(List[Dict[str, Any]]): The metadata to add.List[List[float]]0 (List[List[float]]1): The batch size to use for the upload.
get_utterances
include_metadata(bool): Whether to include function schemas and metadata in the returned Utterance objects - QdrantIndex does not currently support this parameter so it is ignored. If required for your use-case please reach out to semantic-router maintainers on GitHub via an issue or PR.
List[Utterance]: A list of Utterance objects.
delete
route_name(str): The name of the route to delete.
describe
IndexConfig: The index configuration.
is_ready
bool: True if the index is ready, False otherwise.
query
vector(np.ndarray): The vector to query.top_k(int): The number of results to return.route_filter(Optional[List[str]]): The route filter to apply.sparse_vector(dict[int, float] | SparseEmbedding | None): The sparse vector to query.
Tuple[np.ndarray, List[str]]: A tuple of the scores and route names.
aquery
vector(np.ndarray): The vector to query.top_k(int): The number of results to return.route_filter(Optional[List[str]]): The route filter to apply.sparse_vector(dict[int, float] | SparseEmbedding | None): The sparse vector to query.
Tuple[np.ndarray, List[str]]: A tuple of the scores and route names.
aget_routes
List[str]: A list of routes.
delete_index
None: None
convert_metric
metric(Metric): The metric to convert.
Distance: The converted metric.
__len__
int: The total number of vectors.
adelete
route_name(str): The name of the route to delete.
list[str]: List of IDs of the vectors deleted (empty list, as Qdrant does not return IDs).
adelete_index
None: None

