embeddings
(List[List[float]]
): List of embeddings to upsert.routes
(List[str]
): List of routes to upsert.utterances
(List[str]
): List of utterances to upsert.function_schemas
(Optional[List[Dict[str, Any]]]
): List of function schemas to upsert.metadata_list
(List[Dict[str, Any]]
): List of metadata to upsert.List[List[float]]
0 (List[List[float]]
1): List of sparse embeddings to upsert.List[List[float]]
2: List of records to upsert.
**data
(dict
): Keyword arguments to pass to the BaseModel constructor.dict
: Dictionary representation of the PineconeRecord.
api_key
(Optional[str]
): Pinecone API key.index_name
(str
): Name of the index.dimensions
(Optional[int]
): Dimensions of the index.metric
(str
): Metric of the index.cloud
(str
): Cloud provider of the index.Optional[str]
0 (str
): Region of the index.Optional[str]
2 (str
): Host of the index.Optional[str]
4 (Optional[str]
): Namespace of the index.Optional[str]
6 (Optional[str]
): Base URL of the Pinecone API.Optional[str]
8 (Optional[str]
9): Whether to initialize the index asynchronously.embeddings
(List[List[float]]
): List of embeddings to upsert.routes
(List[str]
): List of routes to upsert.utterances
(List[str]
): List of utterances to upsert.function_schemas
(Optional[List[Dict[str, Any]]]
): List of function schemas to upsert.metadata_list
(List[Dict[str, Any]]
): List of metadata to upsert.List[List[float]]
0 (List[List[float]]
1): Number of vectors to upsert in a single batch.List[List[float]]
2 (List[List[float]]
3): List of sparse embeddings to upsert.embeddings
(List[List[float]]
): List of embeddings to upsert.routes
(List[str]
): List of routes to upsert.utterances
(List[str]
): List of utterances to upsert.function_schemas
(Optional[List[Dict[str, Any]]]
): List of function schemas to upsert.metadata_list
(List[Dict[str, Any]]
): List of metadata to upsert.List[List[float]]
0 (List[List[float]]
1): Number of vectors to upsert in a single batch.List[List[float]]
2 (List[List[float]]
3): List of sparse embeddings to upsert.route_name
(str
): Name of the route to delete.list[str]
: List of IDs of the vectors deleted.
route_name
(str
): Name of the route to delete.list[str]
: List of IDs of the vectors deleted.
None
: None
IndexConfig
: IndexConfig
bool
: True if the index is ready, False otherwise.
vector
(np.ndarray
): The query vector to search for.top_k
(int, optional
): The number of top results to return, defaults to 5.route_filter
(Optional[List[str]], optional
): A list of route names to filter the search results, defaults to None.sparse_vector
(Optional[SparseEmbedding]
): An optional sparse vector to include in the query.kwargs
(Any
): Additional keyword arguments for the query, including sparse_vector.np.ndarray
0: If the index is not populated.np.ndarray
1: A tuple containing an array of scores and a list of route names.
vector
(np.ndarray
): The query vector to search for.top_k
(int, optional
): The number of top results to return, defaults to 5.route_filter
(Optional[List[str]], optional
): A list of route names to filter the search results, defaults to None.kwargs
(Any
): Additional keyword arguments for the query, including sparse_vector.sparse_vector
(Optional[dict]
): An optional sparse vector to include in the query.np.ndarray
0: If the index is not populated.np.ndarray
1: A tuple containing an array of scores and a list of route names.
List[Tuple]
: A list of (route_name, utterance) objects.
None
: None
client_only
(bool, optional
): Whether to check only the client attributes. If False
attributes will be checked for both client and index operations. If True
only attributes for client operations will be checked. Defaults to False.bool
: True if the class attributes exist, False otherwise.
int
: The total number of vectors.
int
: The total number of vectors.