semantic_router.index.pinecone
build_records
Build records for Pinecone upsert.
Arguments:
embeddings
(List[List[float]]
): List of embeddings to upsert.routes
(List[str]
): List of routes to upsert.utterances
(List[str]
): List of utterances to upsert.function_schemas
(Optional[List[Dict[str, Any]]]
): List of function schemas to upsert.metadata_list
(List[Dict[str, Any]]
): List of metadata to upsert.List[List[float]]
0 (List[List[float]]
1): List of sparse embeddings to upsert.
Returns:
List[List[float]]
2: List of records to upsert.
PineconeRecord Objects
metadata
Additional metadata dictionary
__init__
Initialize PineconeRecord.
Arguments:
**data
(dict
): Keyword arguments to pass to the BaseModel constructor.
to_dict
Convert PineconeRecord to a dictionary.
Returns:
dict
: Dictionary representation of the PineconeRecord.
PineconeIndex Objects
__init__
Initialize PineconeIndex.
Arguments:
api_key
(Optional[str]
): Pinecone API key.index_name
(str
): Name of the index.dimensions
(Optional[int]
): Dimensions of the index.metric
(str
): Metric of the index.cloud
(str
): Cloud provider of the index.Optional[str]
0 (str
): Region of the index.Optional[str]
2 (str
): Host of the index.Optional[str]
4 (Optional[str]
): Namespace of the index.Optional[str]
6 (Optional[str]
): Base URL of the Pinecone API.Optional[str]
8 (Optional[str]
9): Whether to initialize the index asynchronously.
add
Add vectors to Pinecone in batches.
Arguments:
embeddings
(List[List[float]]
): List of embeddings to upsert.routes
(List[str]
): List of routes to upsert.utterances
(List[str]
): List of utterances to upsert.function_schemas
(Optional[List[Dict[str, Any]]]
): List of function schemas to upsert.metadata_list
(List[Dict[str, Any]]
): List of metadata to upsert.List[List[float]]
0 (List[List[float]]
1): Number of vectors to upsert in a single batch.List[List[float]]
2 (List[List[float]]
3): List of sparse embeddings to upsert.
aadd
Add vectors to Pinecone in batches.
Arguments:
embeddings
(List[List[float]]
): List of embeddings to upsert.routes
(List[str]
): List of routes to upsert.utterances
(List[str]
): List of utterances to upsert.function_schemas
(Optional[List[Dict[str, Any]]]
): List of function schemas to upsert.metadata_list
(List[Dict[str, Any]]
): List of metadata to upsert.List[List[float]]
0 (List[List[float]]
1): Number of vectors to upsert in a single batch.List[List[float]]
2 (List[List[float]]
3): List of sparse embeddings to upsert.
delete
Delete specified route from index if it exists. Returns the IDs of the vectors
deleted.
Arguments:
route_name
(str
): Name of the route to delete.
Returns:
list[str]
: List of IDs of the vectors deleted.
adelete
Asynchronously delete specified route from index if it exists. Returns the IDs
of the vectors deleted.
Arguments:
route_name
(str
): Name of the route to delete.
Returns:
list[str]
: List of IDs of the vectors deleted.
delete_all
Delete all routes from index if it exists.
Returns:
None
: None
describe
Describe the index.
Returns:
IndexConfig
: IndexConfig
is_ready
Checks if the index is ready to be used.
Returns:
bool
: True if the index is ready, False otherwise.
query
Search the index for the query vector and return the top_k results.
Arguments:
vector
(np.ndarray
): The query vector to search for.top_k
(int, optional
): The number of top results to return, defaults to 5.route_filter
(Optional[List[str]], optional
): A list of route names to filter the search results, defaults to None.sparse_vector
(Optional[SparseEmbedding]
): An optional sparse vector to include in the query.kwargs
(Any
): Additional keyword arguments for the query, including sparse_vector.
Raises:
np.ndarray
0: If the index is not populated.
Returns:
np.ndarray
1: A tuple containing an array of scores and a list of route names.
aquery
Asynchronously search the index for the query vector and return the top_k results.
Arguments:
vector
(np.ndarray
): The query vector to search for.top_k
(int, optional
): The number of top results to return, defaults to 5.route_filter
(Optional[List[str]], optional
): A list of route names to filter the search results, defaults to None.kwargs
(Any
): Additional keyword arguments for the query, including sparse_vector.sparse_vector
(Optional[dict]
): An optional sparse vector to include in the query.
Raises:
np.ndarray
0: If the index is not populated.
Returns:
np.ndarray
1: A tuple containing an array of scores and a list of route names.
aget_routes
Asynchronously get a list of route and utterance objects currently
stored in the index.
Returns:
List[Tuple]
: A list of (route_name, utterance) objects.
delete_index
Delete the index.
Returns:
None
: None