build_records
embeddings
(List[List[float]]
): List of embeddings to upsert.routes
(List[str]
): List of routes to upsert.utterances
(List[str]
): List of utterances to upsert.function_schemas
(Optional[List[Dict[str, Any]]]
): List of function schemas to upsert.metadata_list
(List[Dict[str, Any]]
): List of metadata to upsert.List[List[float]]
0 (List[List[float]]
1): List of sparse embeddings to upsert.
List[List[float]]
2: List of records to upsert.
PineconeRecord Objects
metadata
Additional metadata dictionary__init__
**data
(dict
): Keyword arguments to pass to the BaseModel constructor.
to_dict
dict
: Dictionary representation of the PineconeRecord.
PineconeIndex Objects
__init__
api_key
(Optional[str]
): Pinecone API key.index_name
(str
): Name of the index.dimensions
(Optional[int]
): Dimensions of the index.metric
(str
): Metric of the index.cloud
(str
): Cloud provider of the index.Optional[str]
0 (str
): Region of the index.Optional[str]
2 (str
): Host of the index.Optional[str]
4 (Optional[str]
): Namespace of the index.Optional[str]
6 (Optional[str]
): Base URL of the Pinecone API.Optional[str]
8 (Optional[str]
9): Whether to initialize the index asynchronously.
add
embeddings
(List[List[float]]
): List of embeddings to upsert.routes
(List[str]
): List of routes to upsert.utterances
(List[str]
): List of utterances to upsert.function_schemas
(Optional[List[Dict[str, Any]]]
): List of function schemas to upsert.metadata_list
(List[Dict[str, Any]]
): List of metadata to upsert.List[List[float]]
0 (List[List[float]]
1): Number of vectors to upsert in a single batch.List[List[float]]
2 (List[List[float]]
3): List of sparse embeddings to upsert.
aadd
embeddings
(List[List[float]]
): List of embeddings to upsert.routes
(List[str]
): List of routes to upsert.utterances
(List[str]
): List of utterances to upsert.function_schemas
(Optional[List[Dict[str, Any]]]
): List of function schemas to upsert.metadata_list
(List[Dict[str, Any]]
): List of metadata to upsert.List[List[float]]
0 (List[List[float]]
1): Number of vectors to upsert in a single batch.List[List[float]]
2 (List[List[float]]
3): List of sparse embeddings to upsert.
delete
route_name
(str
): Name of the route to delete.
list[str]
: List of IDs of the vectors deleted.
adelete
route_name
(str
): Name of the route to delete.
list[str]
: List of IDs of the vectors deleted.
delete_all
None
: None
describe
IndexConfig
: IndexConfig
is_ready
bool
: True if the index is ready, False otherwise.
query
vector
(np.ndarray
): The query vector to search for.top_k
(int, optional
): The number of top results to return, defaults to 5.route_filter
(Optional[List[str]], optional
): A list of route names to filter the search results, defaults to None.sparse_vector
(Optional[SparseEmbedding]
): An optional sparse vector to include in the query.kwargs
(Any
): Additional keyword arguments for the query, including sparse_vector.
np.ndarray
0: If the index is not populated.
np.ndarray
1: A tuple containing an array of scores and a list of route names.
aquery
vector
(np.ndarray
): The query vector to search for.top_k
(int, optional
): The number of top results to return, defaults to 5.route_filter
(Optional[List[str]], optional
): A list of route names to filter the search results, defaults to None.kwargs
(Any
): Additional keyword arguments for the query, including sparse_vector.sparse_vector
(Optional[dict]
): An optional sparse vector to include in the query.
np.ndarray
0: If the index is not populated.
np.ndarray
1: A tuple containing an array of scores and a list of route names.
aget_routes
List[Tuple]
: A list of (route_name, utterance) objects.
delete_index
None
: None
adelete_index
ais_ready
client_only
(bool, optional
): Whether to check only the client attributes. If False attributes will be checked for both client and index operations. If True only attributes for client operations will be checked. Defaults to False.
bool
: True if the class attributes exist, False otherwise.
__len__
int
: The total number of vectors.
alen
int
: The total number of vectors.