encoders
semantic_router.encoders.clip
CLIPEncoder Objects
Multi-modal dense encoder for text and images using CLIP-type models via
HuggingFace.
Arguments:
name
(str
): The name of the model to use.tokenizer_kwargs
(Dict
): Keyword arguments for the tokenizer.processor_kwargs
(Dict
): Keyword arguments for the processor.model_kwargs
(Dict
): Keyword arguments for the model.device
(Optional[str]
): The device to use for the model.str
0 (str
1): The tokenizer for the model.str
2 (str
1): The processor for the model.str
4 (str
1): The model.str
6 (str
1): The torch library.str
8 (str
1): The PIL library.
__init__
Initialize the CLIPEncoder.
Arguments:
**data
(Dict
): Keyword arguments for the encoder.
__call__
Encode a list of documents. Can handle both text and images.
Arguments:
docs
(List[Any]
): The documents to encode.batch_size
(int
): The batch size for the encoding.normalize_embeddings
(bool
): Whether to normalize the embeddings.
Returns:
List[List[float]]
: A list of embeddings.