Skip to main content

FastEmbedEncoder Objects

class FastEmbedEncoder(DenseEncoder)
Dense encoder that uses local FastEmbed to embed documents. Supports text only. Requires the fastembed package which can be installed with pip install 'semantic-router[fastembed]' Arguments:
  • name: The name of the embedding model to use.
  • max_length: The maximum length of the input text.
  • cache_dir: The directory to cache the embedding model.
  • threads: The number of threads to use for the embedding.

__init__

def __init__(score_threshold: float = 0.5, **data)
Initialize the FastEmbed encoder. Arguments:
  • score_threshold (float): The threshold for the score of the embedding.

__call__

def __call__(docs: List[str]) -> List[List[float]]
Embed a list of documents. Supports text only. Arguments:
  • docs (List[str]): The documents to embed.
Raises:
  • ValueError: If the embedding fails.
Returns: List[List[float]]: The vector embeddings of the documents.
I